Section III

- 6. (a) Show that $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x \cos \theta y \sin \theta, x \sin \theta + y \cos \theta, z)$ is non-singular for all values of θ .
 - (b) Find the matrix representing the transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x + y, 2x y, 7y) relative to the standard basis of \mathbb{R}^2 and \mathbb{R}^3 . 2½
- 7. (a) Five the co-ordinates of vector (1, 1, 1) relative to basis (1, 1, 2), (2, 2, 1), (1, 2, 2).
 - (b) For a linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$, find the eigen values and basis for eigen space, when T(x, y, z) = (x + y + z, 2y + z, 2y + 3z).

No. of Printed Pages: 05 Roll No.

32506

B.A. & Hons. (Subsidiary) EXAMINATION, 2025

(Sixth Semester)

(Regular & Re-appear)

MATHEMATICS

BM-362

Linear Algebra

Time: 3 Hours [Maximum Marks: 26

Before answering the question-paper, candidates must ensure that they have been supplied with correct and complete question-paper. No complaint, in this regard will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 1 is compulsory.

(Compulsory Question)

- 1. (a) Define internal and external binary operations.
 - (b) Show that the set $\{(1, 2, 3), (1, 0, 0), (0, 2, 3)\}$ in \mathbb{R}^3 is linearly dependent. 1
 - (c) Define linear transformation.
 - (d) State Sylvester's Law. 1
 - (e) Define A(W)-Annihilator of W. 1
 - (f) Define norm of a vector. 1

Section I

- 2. (a) Show by an example, the union of two subspaces of a vector space $V_3(R)$ may not be a subspace of $V_3(R)$. 2½
 - (b) For what value of k (if any) the vector v = (1, -2, k) can be expressed as a linear combination of vectors $v_1 = (3, 0, -2)$ and $v_2 = (2, -1, -5)$ in $\mathbb{R}^3(\mathbb{R})$. 2½
- 3. (a) Show that the vectors (2, -1, 0), (3, 5, 1), (1, 1, 2) form a basis of \mathbb{R}^3 . $2\frac{1}{2}$

2

(b) If W is a subspace of $v_3(R)$ generated by $\{(1, 0, 0), (1, 1, 0), \text{ find } v/w \text{ and its basis.}\}$

 $2\frac{1}{2}$

Section II

- **4.** (a) Show that the transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x_1, x_2, x_3) = (x_1, x_2)$ is a linear transformation and is onto but not one-one. $2\frac{1}{2}$
 - (b) Find linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose range space is spanned by the vectors (1, 2, 3), (4, 5, 6). 2½
- 5. (a) Prove that the images of linearly independent vectors under a linear transformation need not be linearly independent.

 2½
 - (b) If W is any subset of a vector space V(F), then prove that A(W) is a subspace of V*.

 $2\frac{1}{2}$

Section IV

- 8. (a) State and prove triangle in equality. 2½
 - (b) Let W be a non-empty subset of an inner product space V(F). Then prove that W^{\perp} is a subspace of V(F). $2\frac{1}{2}$
- 9. (a) Let S be a subset of an inner product space V. Then show that $S^{\perp} = S^{\perp \perp \perp}$.

 $2\frac{1}{2}$

(b) Let T be a linear operator on a unitary space V. Then T is normal off:

$$||T^*(u)|| = ||T(u)|| \text{ for all } u \in V.$$
 2½

Section IV

- 8. (a) State and prove triangle in equality. 2½
 - (b) Let W be a non-empty subset of an inner product space V(F). Then prove that W^{\perp} is a subspace of V(F). $2\frac{1}{2}$
- 9. (a) Let S be a subset of an inner product space V. Then show that $S^{\perp} = S^{\perp \perp \perp}$.

 $2\frac{1}{2}$

(b) Let T be a linear operator on a unitary space V. Then T is normal off:

$$||T^*(u)|| = ||T(u)||$$
 for all $u \in V$. $2\frac{1}{2}$

